Universal gradient methods for convex optimization problems
نویسنده
چکیده
In this paper, we present new methods for black-box convex minimization. They do not need to know in advance the actual level of smoothness of the objective function. Their only essential input parameter is the required accuracy of the solution. At the same time, for each particular problem class they automatically ensure the best possible rate of convergence. We confirm our theoretical results by encouraging numerical experiments, which demonstrate that the fast rate of convergence, typical for the smooth optimization problems, sometimes can be achieved even on nonsmooth problem instances.
منابع مشابه
Particle Swarm Optimization for Hydraulic Analysis of Water Distribution Systems
The analysis of flow in water-distribution networks with several pumps by the Content Model may be turned into a non-convex optimization uncertain problem with multiple solutions. Newton-based methods such as GGA are not able to capture a global optimum in these situations. On the other hand, evolutionary methods designed to use the population of individuals may find a global solution even for ...
متن کاملA Universal Primal-Dual Convex Optimization Framework
A Universal Primal-Dual Convex Optimization Framework In this supplementary document, we provide the technical proofs and additional implementation details, and it is organized as follows: Section A defines the key estimates, that forms the basis of the universal gradient algorithms. Sections B and C present the proofs of Theorems 4.1 and 4.2 respectively. Finally, Section D provides the implem...
متن کاملA family of subgradient-based methods for convex optimization problems in a unifying framework
We propose a new family of subgradientand gradient-based methods which converges with optimal complexity for convex optimization problems whose feasible region is simple enough. This includes cases where the objective function is non-smooth, smooth, have composite/saddle structure, or are given by an inexact oracle model. We unified the way of constructing the subproblems which are necessary to...
متن کاملA Universal Catalyst for First-Order Optimization
We introduce a generic scheme for accelerating first-order optimization methods in the sense of Nesterov, which builds upon a new analysis of the accelerated proximal point algorithm. Our approach consists of minimizing a convex objective by approximately solving a sequence of well-chosen auxiliary problems, leading to faster convergence. This strategy applies to a large class of algorithms, in...
متن کاملGeneralized Uniformly Optimal Methods for Nonlinear Programming
In this paper, we present a generic framework to extend existing uniformly optimal convex programming algorithms to solve more general nonlinear, possibly nonconvex, optimization problems. The basic idea is to incorporate a local search step (gradient descent or Quasi-Newton iteration) into these uniformly optimal convex programming methods, and then enforce a monotone decreasing property of th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Math. Program.
دوره 152 شماره
صفحات -
تاریخ انتشار 2015